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ABSTRACT

The reflection of a shock wave at the end wall of a shock tube is
examined theoretically for the case in which the flow behind the incident
shock wave exhibits a linear density variation and the gas in the shock
tube is ideal. The reflection process is shown to be unsteady, resulting
in the development of a nonuniform flow field called an entropy layer.
The character of the entropy layer displayed in this problem provides
useful information for understanding the flow field formed when nonideal
effects such as relaxation phenomena or radiative cooling are important

behind an incident shock wave.
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I. INTRODUCTION

Calculations of the equilibrium gas state behind a reflected shock
wave in a shock tube usually employ the assumption that the reflected
shock wave is travelling at a constant speed into a uniform equilibrium
flow. When relaxation phenomena are present, a shock wave actually
reflects with a speed which varies during the time required for the
reflected shock wave to travel through the nonuniform relaxation zone
behind the incident shock wave. The gas particles which pass through the
unsteady reflected shock wave experience different thermodynamic histories
than those which pass through the later steady shock wave, and hence
uvltimately reach different equilibrium states than the state predicted by
the steady-shock calculation. The spatial region containing this non-
uniform equilibrium gas can be called an entropy layer; this terminology
is consistent with that used to describe the region adjacent to the
surface of a wedge in steady supersonic flow of a relaxing gas.

It can be shown that an entropy layer will always be formed in the
region behind the reflected shock wave when the flow is nonunifbrm behind
the incident shock wave, e.g., owing to relaxation phenomena, radiative
cooling, side-wall boundary-layer effecté, ete. Unfortunately, exact
solutions for the thermodynamic properties throughout such entropy layers
are difficult to obtain, and even the gqualitative character of these
regions is not immediately obvious.l’2 The object of this paper is to
present an analysis for a simpler but illustrative case of shock-wave
reflection in which the flow behind the incident shock wave exhibits a
linear density variation and the gas is everywhere ideal. The density
veriation is assumed small so that all quantities behind both the
incident and reflected shock waves vary only slightly from their unper-

turbed values, and linearized equations can be used to calculate the flow
field.



IT. ANALYSIS

In order to solve the linearized gas-dynamic equations behind the
reflected shock wave, one must first determine the boundary (jump) con-
ditions along the reflected-shock trajectory. The values of the flow-
field properties along this trajectory differ from the unperturbed values
due to two coupled effects: wvariations in the flow properties behind
the incident shock wave, and variations in the speed of the reflected
shock wave. The determination of these boundary conditions 1is straight-
forward, using standard shock-jump relations, since the variationsg in the
incident-flow properties are all known (because of the specified density
distribution) and the position of the reflected shock wave can be approxi-
mated by the unperturbed trajectory, even though the reflected-shock speed
is allowed to vary. Once the boundary conditions are determined, the
solution for the flow field behind the reflected shock wave is obtained
by solving the elementary wave equation in the perturbed flow variables
of pressure and particle velocity.

The space-time diagram representing the overall flow process is
shown in Fig. 1, where x 1is the distance from the shock-tube end wall
and t 4d1s the time after reflection. The density perturbation behind

the incident shock wave will be represented by
t —
pL/0, = Bs, (1)

where is the unperturbed value of the density, £ 1is the density-

P
gradientgparameter, and s 1is the distance behind the incident shock
wave. For a given density distribution, the variations in the values of
other thermodynamic properties behind the incident shock wave are deter-
mined by the conservation equations of mass and momentum and the thermal
equation of state. For example, since the pressure behind a constant-

speed incident shock wave is given by

then the perturbation in pressure owing to a small variation in density is



p) = pr§(pl/oe)(oé/52)-

If one neglects pl in the previous equation, the last equation can be

rewritten in dimensionless form as
! = -

where the abbreviated notation p21 = pe/pl has been adopted. Thus the
parameter P fixes the variations of all flow-field properties with
distance behind the incident shock wave. See Appendix A for a derivation
of the pertinent linearized relations in the incident-shock flow.

The boundary conditions for the flow in region 5 are determined from
the standard shock-jump relations. For example, the relation for the

density jump across the reflected shock wave is
P5 = PPy = (¥ + 1o, /I(y - I + 2],

where M} represents the dimensionless speed of the reflected shock

wave with respect to the flow in region 2 and is defined by
M= [Vf * Vé(l B pl2)]/a2'

The quantity a, is the local speed of sound in region 2, i.e.,;

2

a, = (yRTE) .

Retaining only first-order terms in the perturbed quantities, one finds

from the shock-jump relation for density that
Bi/pg = By/ey + BLy/esys

where
Blo/pgy = (H/G)(HL),

¢ = (y - l)Mi + 2,



and the caret symbol has been used to denote the value of the quantity
along the reflected-shock trajectory.
The perturbation in the reflected-shock Mach number results from

variations in p2, a2, and Vf. However, the varistions in a and p2

2
are related by

1 - - - 1
ab/a, = -[{pyy - 2)/2(0yy - 1)10}/6,
so that the perturbation in Mach number becomes simply
Rr - at 1
The quentity H 1is defined by

H=1M,/M, + (o) -2)/2(py - 1)

where Mé is the dimensionless speed of the flow in region 2 with

respect to the incident shock wave, i.e.

M, = V_/p

o 01%2°

Finally, one can write the boundary condition for density as

5;/05 = [1 + 41/c1(8)/p,) + [4/Gp52](V}/V3)-

Consistent with the use of first-order perturbation theory, the Jump
conditions across the reflected shock wave can be satisfied along the
unperturbed ghock trajectory rather than along the actual trajectory.

The perturbed values for the flow properties immediately upstream of the

reflected shock wave are thus given simply by substituting
s = (V, + Vé)t
into the appropriate equations for the flow properties in region 2.
Using Eq. (1), the density perturbation 6é/p5 is given by
BL(t)/og = [1 + kE/GILt + [4/Gog,J(VL/V,), (2)

4



where

It = B(V£ + Vs)t.

For additional details regarding this derivation see Appendix B. Similar
analyses for pressure and particle velocity (see Appendices C and D,

respectively) yield the boundary conditions

A byMiH 1 ”YM}V}

B2(t)/p5 = 57D el 5, (Ve (vi/v.) (3)
and

85 (6)/V,, = [W/G - V /[o5,V 1Lt + [1 + o o (h/G - 1)1(V. /v, ). (k)

All boundary conditions thus become functions of both time and the
unknown quantity V;.

These boundary conditions (Egs. (2) through (4)) can be rewritten in
dimensional form (using the identity Ps = psag/y) as

g(t) = ALt + BV}, (5)

ﬁ%(t)/psas = CLt + DV, (6)
and

6é(t) = ELt + FV), (7)

where the coefficients A through F are directly related to the
bracketed quantities shown above. Equations (5) through (7) provide the
boundary conditions for the flow-field solution in region 5; the coeffi-
cients A through F are related to known (unperturbed) quantities
since MS and vy are assumed given.

Because of the unusual boundary conditions, care must be exercised
in employing the linearized gas-dynamic equations to solve for the flow
field in region 5. This can best be seen by considering the following

derivation. The continuity, momentum, and energy equations for the

p)



perturbed variables in region 5 are, to first order,

Bpé/at + pSGuS/ax 0,

au5/at + apé/ax 0,

and

’ 1 - ! = 0.
p5cpaT5/at ap5/at 0
Using the linearized equation of state,
t —_ 1 1
p5/p5 = P5/P5 + T3/Ts

and the continuity equation, one can rewrite the energy equation in terms

of pé and u i.e.,

5)
apL/3t + Yo dug/3x = O.

The momentum equation and the second form of the energy equation can now

be combined to yield elementary wave equations in the perturbed variables

pé and u5, Y-

62pé/8t2 - a§82pé/ax2 = 0. (8)

Note, however, for this problem, that no combination of the conservation
equations will yield an elementary wave equation in either of the per-

turbed varigbles pé or T!. This is a result of the fact that the

entropy varies between adjagent particle paths in region 5 (non-homen-
tropie flow), so the usual adigbatic state relation for pressure as &
function of dens1ty cannot be invoked to replace 8p5/8x in the momentum
equation with a Bp /ax. The difference in entropy across the reflected
flow field is generated, of course, by the mechanism which produced the
initial perturbations in region 2, and by the varying strength of the
reflected shock wave.

After applying the no-flow boundary condition at the end wall, one

can write the general solutions of the wave equation for u

6

5 and pé as



ug = fx + aSt) - F(-x + a5t)

and

-p5/p5a5 = f(X + aSt) + f('x + ast),

where f is an arbitrary function. Applying the boundary conditions
along the unperturbed shock trajectory (Egs. (5) and (6)), one can then
show that the function f is given by the linear relation

£(¢) = - 5 KIE,

where
K = (BC - DA)/(Ba5 + DVr).

The perturbed velocity and pressure distributions are therefore
\

- KIx/V, = - (Kx/R)Lt, (9)

uS/Vi

(YK)1t. (10)

pg/p5

The quantity X = V}t was introduced in Eq. (9) in order to provide a
common form with the solutions shown below where &£ appears as a natural

variable. The perturbation in the reflected-shock velocity is given by

1 - . ,
VL/V, = - JLt, (11)

where

J=(c+ Aa5/vr)/(Dvr + Bag).

A more detailed analysis of these wave-equation solutions is provided in
Appendix E.
The density distribution can be established by integrating the

continuity equation, i.e.,



pg/p5 = KLt + g(x),

where g(x) 1s a function which can be determined by satisfying the

boundary condition for p! at the shock wave, Eq. (7). This last step
5 o}

yields

p/ps = [K + T(x/2)ILt, (12)
where

I=(1+54u/0G - 4J/Gp52 - X).

For additional details regarding the steps involved in the density

solution, see Appendix I.

Using the linearized equation of state, one can now show that the

temperature distribution is given by
Té/TB = [{y - 1)K - I(x/&) ILt, (13)

while the entropy perturbation becomes (see Appendix G)

85/R = -[yIL/(y - 1)V, Ix. (k)



ITI. DISCUSSION OF RESULTS

Numerical results for the dimensionless coefficients I, J, and K,
which appear in Egs. (9) through (1k), are presented in Fig. 2. These
coefficients vary only slightly for Mé 2 3, and therefore one can
approximate them with constants.

An inspection of Eq. (9) shows that the velocity perturbation is a
function of x only; the negative sign indicates that the motion is
toward the end wall. The pressure perturbation (Eq. (10)), on the con-
trary, is not a function of x, and it rises uniformly with time for all
the fluid particles in region 5. It is of interest that, for either a
monatomic or diatomic gas, the pressure perturbation p%/bs is nearly
8% at the instant the reflected shock wave intercepts a density variation
6é/p2 of 10% (recall that 6é/p2 = It along the reflected-shock trajec-
tory). This last result is physically reasonsble when one recognizes
that any density increase in region 2 represents a proportionste increase
in dynamic pressure as seen by the reflected shock wave, and hence a
similar increase in static pressure must arise in region 5.

The solution for the reflected-shock speed, given by Eq. (11),
indicates a perturbation which is negative and proportional to time so that
the perturbed shock trajectory becomes parabolic. Although the speed of
the reflected shock wave decreases with time, the Mach number with respect
to the incident flow actually increases because of the decreasing value of
the speed of sound in region 2. The result of the increasing shock strength,
and of the increasing value of mass density in region 2, 1s the development
of a large positive pertufbation:hldensity immediately behind the reflected
shock wave (seé Eq. (12)). Owing to compressive effects, the density per-
turbation at the end wall is also positive, but smaller than the perturba-
tion at the shock wave. The unsteady reflection process thus creates a
negative gradient in density toward the end wall.

The existence of an entropy layer is cohfirmed by Eq. (14) which
displays a functional dependence on x alone. This result verifies the
formulation of the problem for region 5 wherein the compression process
along a particle path was assumed to bé isentropic and differences in

entropy could exist only between adjacent particle paths.

9



The solution for the temperature distribution is perhaps the most
important and interesting result of this analysis. An examination of
Eq. (15) shows that the temperature perturbation just behind the reflected
shock front is negative and becomes more negative with time, while
the perturbation at the end wall is positive and increases with time. In
fact, there is a growing region of gas near the end wall, of width
[(y - 1)K/I]%, wherein the temperature perturbation is positive and
increases steadily with time. This result is shown graphically in Fig. 3.
In the strong-shock limit, (y - l)K/I is about O.4 for a monatomic gas,
and 0.3 for a diatomic gas, which shows that an important fraction of the
gas in region 5 actually experiences a positive temperature perturbation.

This unexpected result for the temperature can be explained as
follows. Recall that no mention has been made of the source of the density
perturbation in region 2. The results obtained thus far have not
reqguired such a specification. Implicit in the conservation equations
for steady, one-dimensional flow of an ideal gas, however, is the require-
ment that the flow in region 2 lose thermal energy in order for the
density to increase. Thus some nonadisbatic process must be present to
extract energy from the gas and cause a temperature decrease, if the
density is to increase. This energy loss is also responsible for the
negative temperature perturbation immediately behind the reflected shock
wave, as shown in Fig. 3. Whatever the mechanism for energy extraction
from region 2, however, the momentum of this gas (in laboratory coordinates)
is increased, and this increase in momentum manifests itself as a pressure
rise in region 5. The net effect is that compressive work is continually
being done on the gas in region 5, thus adding thermal energy along each
particle path. Furthermore, the rate of energy addition is the same
along all particle paths since the pressure rises uniformly. Thé energy
of a particular gas element at any given time thus depends on the initial
thermal energy of the element upon entering region 5 and the length of
time spent in region 5. |

A very interesting observation can be made by comparing the rate at
which internal energy is gained by a unit mass of gas in region 5 with
the rate at which internal energy is lost by a unit mass of gas in region

2. Since an ideal gas is being considered, Eq. (13) is also an expression

10



for the perturbation in the internal energy, i.e.,
eé/e5 = [(y - 1)K -~ I(x/R) JLt.

The rate of change of internal energy following a fluid particle is
therefore

Deé/]}t ~ aeé/at = (y - 1)Ke5L (15)

since the fluid velocity us is small. DNote that this quantity has the
same value for all of the particles in region 5 (i.e., it is not a func-
tion of x or t).

For the assumed density distribution, the perturbation in internal

energy in region 2 is given approximately by
1 —- - - - 1

The rate of change of internal energy following a fluid particle in

region 2 is therefore (see Appendix H)

which is & constant for all of the particles in region 2. The ratio of
the rates of energy change for the fluid particles in the two regions
thus becomes

De! /Dt (b, = L)(peq - 1)
5 (e 21 51
Deé7Dt = (v l)KTSZ (p2:L - 27(952 -1) " (17)

Figure 4 presents a plot of this ratio for a range of Mach numbers and
for two values of <. The results show that for strong shocks in a
digtomic gas the rate at which a unit mass of gas in region 5 gains
internal energy is more than four times the rate at which a unit mass of
gas in region 2 loses internal energy; the rate is more than six times
as great in a monatomic gas.

Some of the results obtained here for an ideal gas are also of use

in understanding shock-wave reflection in non-ideal gases. Although the

11



numerical results may differ, many of the important physical concepts

are retained. For example, one must conclude that radiative cooling
behind an incident shock wave, a non-adiabatic effect which would increase
the density in region 2, should also cause an entropy layer similar to
that discussed gsbove. If radiative coodling occurs in region 2, one ma&
thus expect a trend toward higher temperatures near the end wall and lower
temperatures near the reflected shock wave. In a real case, of course,
when energy is being lost by means of radiation from region 2, region 5
will also be losing energy, and this fact would have to be included in
any meaningful calculation. Nevertheless, it is quite clear that the
effect discussed here can be significant (as exhibited by the magnitude

of the ratio in Eq. (17)) and should be considered if one is to interpret
correctly the results of an experiment involving, s&y, the measurement of
radiative intensity from region 5.

The results for an ideal gas are also useful as an aid in explaining
the overall character of the reflected-shock flow field when vibrational
or chemical relaxation are important behind an incident shock wave. This
is possible since, in general, the perturbing effects of relaxation in
region 2 can be isolated from those effects owing to relaxation in region
5. That 1s, one can reasonably assume that the gas in the reflected-
shock flow field relaxes extremely fast (because of the higher temperature)
and simply passes through a series of local equilibrium states as the flow
field is perturbed by the nonuniformities behind the incident shock wave.
In this case, the boundary conditions along the reflected-shock trajectory
would correspond to a state of immediate local equilibration for the new
gas which passes into region 5. One major difference between the ideal gas
studied here and relaxing flows, however, is that thermal energy is not
actually lost from gas which relaxes in region 2, but simply transferred
from the translational energy mode into internal energy modes, or into
changing the chemical composition of the gas. As a result, the energy
perturbation in region 5, along the reflected-shock trajectory, is
slightly positive instead of negative, and the reflected shock wave
accelerates slightly rather than slows down. However, relaxation in
region 2 must still cause the pressure in region 5 to increase with time,

much the same as for the ideal-gas case, since the effect of increasing

12



density in region 2 is always to increase the pressure in region 5.
Furthermore, as a result of the pressure rise, work is done on the gas,
thus causing a nonuniform increase in the energy content of all the
particles in region 5 and a perturbation of the flow variables throughout
region 5 similar to that found for the ideal gas.

There is another difference between the idealized flow examined
above and relaxing gas flows which shouid be mentioned. Tor cases
involving relaxation, only a limited density change occurs in region 2 so
that the resgulting perturbations in region 5 do not continue to grow with
time. Neglecting transport processes, the reflected shock must eventually
move away from the end wall at a steady speed, leaving behind a growing
region of gas with a uniform equilibrium state and a stationary entropy
layer of finite thickness adjacent to the end wall. TFor such cases, the
"unperturbed"” flow conditions in the reflected region should be considered
to be the uniform equilibrium state, rather than the state present at the
instant of reflection. The thickness of the finite entropy layer scales
directly with the length of the relaxation zone behind the incident shock
wave, and is esgentially the relaxation length compressed by the density
ratio across the reflected shock wave.

It is of interest to note that more detailed analyses of shock-wave
reflection in relaxing gases have recently been reported, and the results
of those studies confirm the existence of finite entropy layers of the

same type discussed here.l’2

The sgimple model employing an ideal gas is
therefore useful in providing, with a minimum of mathematical effort, an
understanding of the character of reflected flow fields when perturbed by

relaxation or radiative~cooling phenomena behind incident shock waves.

13
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APPENDIX A
LINEARTIZED EQUATIONS FOR INCIDENT-SHOCK FLOW
The conservation equations of mass and momentum for one-dimensional,

inviscid flow across a constant-speed normal shock wave are, in shock-

fixed coordinates,

P1Vg = Pollps (a-1)
and
2
py plvi =P, * PH; . (A-2)

The subscript 1 refers to the constant properties upstream of the incident

shock wave while subscript 2 refers to the properties downstream of the

shock wave.

Rearranging these equations, one can show that the pressure downstream

of the shock wave is given by
b, = by * 0 Vo(1 - 0/0,)- (A-3)

A small perturbation in pressure owing to a small perturbation in density

is, accordingly,
T 1 -
b} = P17 (01/0,)(0}/0,)5 (A-4)

where the prime symbol denotes a perturbation quantity and the unprimed
variables refer to the unperturbed values of the properties at the shock
front. Neglecting p; in Eg. (A-3) (a reasonable approximation for

M, » 35 e.g., PE/Pl =10.3 for M =3 and ¥ = 1.4), one can write

the dimensionless variation in pressure as
1 — 1 - . -

The thermal equation of state for an ideal gas is

p = PRt.

15



The linearized form of this equation, valid for small perturbations

away:from a reference condition, is
p'/p = p'/o + T'/T. (4-6)

Assuming that the density perturbation is specified, we see that the
temperature perturbation is given directly from Egs. (A-5) and (A-6),

i.e.,
1 - - - - 1 -
Ty/T, = ~[(pyy - 2)/(0yy - 110}/, (a-7)
Since the speed of sound is defined by
1/2

a = (yRT)™ <,

it follows that the dimensionless perturbation in this quantity, at any

position in region 2, is

al/a, = (11/1)) = -[(o,; - 2)/2(0, - 1)1(e}/p,)- (a-8)

16



APPENDIX B

BOUNDARY CONDITION ON DENSITY ALONG THE REFLECTED-SHOCK TRAJECTORY

The shock~jump relation for the density behind a reflected shock
wave is given by

(v+l)M§
Pg = PgoPy = z;jzsﬂg—:—; Py (B-1)

where M} is the reflected-shock Mach number defined by
M, = [Vs(l-plE) * Vf]/aE'

Retaining the first-order terms in the perturbed quantities, one finds

from the density-Jjump relation that

where

Bp/Psy = (B/GWL /M,
¢ = (y-1; + 2,

and the caret symbol has been used to denote the value of the quantity
along the reflected-shock trajectory.

Although variations in M& are caused by variations in p2, a2,

and Vi, the variations in Py and a, are related by (see Appendix A,

2
Eq. (A-8))
al/a, = -[(py - 2)/2(pyy = 1)1(e4/p,)
s0 that
M;/M} = (BMi/BVE)p 28 V;/Mf * (BME/BQE)a sV 6é/Mr
272 27 T
+

(aMf/aaQ)V Y} éé/ae
r’2
17



can be written simply as

ﬁ;/M? = [Mé/M} + (pyy - 2)/2(p21 - l)]ﬁé/pz * Py v;/vi. (B-3)

The quantity Mé represents the dimensionless speed of the flow in

region 2 with respect to the incident shock wave and is defined by
My = Vy/pp8y

Substituting this last result into Eq. (B-2) yields the density boundary
condition

05/05 = (1+4H/G)o) /0, + (4/G052)V;/V}, (B-4)

where
H=M,/M + (py -2)/2(py; - 1)

This boundary condition can be evaluated along the unperturbed shock
trajectory (% = V}t) by substituting

8 = (VS + V&)t

into the expression for the incident-flow density variation, Eq. (1) in
the text, i.e.,

By/e, = BV, + V)t = Lt.
The final result is
Bs/ps = (L+hE/G)LE + (4/Gogy )V /V (B-5)

which is Eq. (2) in the text.

18



APPENDIX C

BOUNDARY CONDITION ON PRESSURE ALONG THE REFLECTED-SHOCK TRAJECTORY

The shock-jump relation for the pressure behind a reflected shock
wave is given by

Ps = PPy = [1 + 2y - 1)/(y+1)]p,. (c-1)
Retaining first-order terms in the perturbed quantities, one finds‘

B1/n, = Bialos, + B/oy (c-2)
where

BL,/Psy = i/ (v+1)pg, /M.
Recalling Eg. (B-3) from Appendix B,

it /m, = 1(8,/p,) + Po5(VL/V,)5
and Eq. (A-5) from Appendix A,

pi/p, = (04/0,)/(0yy - 1)
one can easily show that

hyMiH

~y _ 1 A rr '
P5/P5 = P52(’Y+1) + ooy - 1 (Dé/pg) + W (Vr/Vr)- (c-3)

If this last result is evaluated along the unperturbed reflected-
shock trajectory, one obtains

Ay )-l-’YMiH 1 LFYMI'VI' ( ' / ) (C ll-)
PS/PS | psplyHL) * Poy - L Lt + W Vel Ve s )

which is Eq. (3) in the text.
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APPENDIX D

BOUNDARY CONDITION ON PARTICLE VELOCITY ALONG THE
REFLECTED-SHOCK TRAJECTORY

The application of the relation for the conservation of mass

immediately across the perturbed reflected shock wave yields
At Aot )y . At t _ B -
(op + B )(uy + &t + v, + V) = (g + B)(V, + V- 0), (p-1)

where up 1s the particle velocity in region 2 in laboratory coordinates,

i.e.,

U, = Vs(l - 912). (D-2)
Retaining only the first-order terms, one finds

pe(up + ﬁé +V, + V}) + 6é(up + V&) = p5(V£ + V; ~4.) +p
However, since

pz(up +V,.) = PsV.s

from the conservation relation applied across the unperturbed shock wave,

Eg. (D-3) can be simplified to read
85/, = (1 = o, )(VL/V) + (BL/og - By/ey) = 1 /os,V, e (D-4)
From Eq. (D-2) it follows that

=+ Ve ,(rL/p,)

so that
w /es V. = (Vo/psy V) (p)/p))

and Eq. (D-4%) becomes
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85/V, = Bs/og = (1 + V /o5 V. )(BY/0,) + (1 = pp5)V, /Y, -

Substituting the known boundary condition for density, Eq. (B-4) of

Appendix B, this last result becomes

85/V, = [48/G - V [og V18 /0, + [1 + pyg(4/G - L)IVL/V, . (p-5)

Finally, evaluating this boundary condition along the unperturbed

reflected-shock trajectory, on obtains

ﬁs/vi = [4H/G - Vs/p51V¥]Lt + [1 + p25(u/G - 1)]v;/vi, (D-6)

which is Eq. (4) in the text.
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APPENDIX E

WAVE-EQUATION SOLUTIONS IN REGION 5

The wave equations in particle velocity and pressure in region 5

are
aeus/at2 - a§62u5/6x2 -0 (E-1)
and

Bepé/ate - agaepé/axg - 0. (E-2)

The boundary conditions are given by

us(x = 0,t) =0, (B-3)

G5(t) = & It +'Bvl'ﬁ, (Elt)
and

ﬁé(t)/p5a5 = C Lt + DV, (E-5)

where, in the notation used in the text,

A = lLHVr/G - VS/DSl:
B=1-~ p25 + ADES/G’

hM?Ha a
C r 2

p5QT'Y+l) * v(e,, - 1)’

and

4M a
T

D = -——T~—Ji7—— .
p52 v+l a2 7

The general solutions of Egs. (E-1) and (E-2) are

us = fx + a5t) + g(x - aSt) (E-6)
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and

-pl/pyag = £(x + ast) - g(x - at). (E-7)
Applying the boundary condition at the end wall, one finds

g(e) = - £(-t)
so that Egs. (E-6) and (E-7) can be rewritten as

ug = fx + ast) ~ f(-x + a5t) (8-8)
and

-pg/psa5 = f(x + a5t) + f(-x + a5t)- (E-9)

Applying the boundary conditions along the unperturbed shock trajectory,
Egs. (E-4) and (E-5), one can write

ALT + BV!
r

f[(vi + aS)t] - f[(-vi + as)t] (E-10)

and

fl

CLT + DV}, -f[(vr + ar)t] - f[(-vi + as)t]. (E-11)

Eliminating V; from these last two equations, one finds that

(DA-BC)Lit (B+D)f[(Vi + aé)t] + (B-D)f[(-vi + a5)t], (E-12)

which yields the solution

£(e) = - % KL& (E-13)
where
K = BC - DA
“ Ba_ + DV °
5 r

The fact that this solution is unique can be seen by expanding the

function f din a Taylor series,
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f(g) = £(0) + £*(0)¢ + f"(0)§2/2 « .o
and then substituting the expression into Eq. (E-12). The zeroth-order
derivative of Eq. (E-12) evaluated at t = O yields

£(0) = 0,

while the first-order derivative establishes the relation

(DA-BC)L = [(B+D)(V£ + a5) + (B-D)(-V} + a5)]f'(0)

so that

BC - DA

1
’ = NS S —————
£'(0) = 2 Ba5 + DV? L.

The expressions for the second~ and all higher-order derivatives yleld

f"(O) = O, f"’(o) = O’ ¢ o o

so that the solution for f£(t) is given by Eq. (E-13).
The solution for the particle velocity now follows from Eg. (E-8),

ug = - % KL[(x + ast) - (x + ast)]:

which simplifies to Eq. (9) in the text,

ué/Vr = - KIx/V, = - (Kx/%)Lt. (E-14)

By similar substitution in Eq. (E-9), one can show that the pressure
solution, Eq. (10) in the text, is given by

pg/p5 = (YK)Lt. (E-15)

The solution for the perturbation in the reflected-shock velocity can
be obtained from Egq. (E-10), i.e.,
, 1
| P - -
ALt + BV) = - 3 KL[(V} + as)t ( v, o+ as)t],

2k



so that
C+ Aa5/v_r
, = L T T ——————— -
vr/vr = ( Ba, 7OV ) (1t). (E-16)

This last result is Eq. (11) in the text.
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APPENDIX F

DENSITY SOLUTION IN REGION 5

The solution for the density can be obtained through the continuity
equation and the known solution for particle velocity. The linearized

form of the continuity equation is

apé/at + psaus/Bx = 0, (F-1)
where

8u5/8x = - KL

(from Eq. (9) in the text). Integrating the continuity relation, one
finds

ot/o5 = + KLt + g(x), (F-2)

where g(x) is a function which can be determined from the boundary

condition for density at the shock wave (Eq. (7) in the text),

Ar t -
BL = ELt + FV, . (F-3)

Substituting the known values for E, F, and V;, one can rewrite
Eq. (F-2) as

6é/p5 = + KLt + g(Vft) = (1 + Wu/G)Lt - (h/pSQG)JLt,
which yields the solution

g(x) = [L + /G - K - 4J/Gp52]Lx/Vf. (F-5)
The solution for density is therefore

oi/pg = [K + I x/R]1t, (F-6)

where I = (1 +48/G - 4/G-, - K). Thie result is also Eq. (12) in
the text.
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APPENDIX G

ENTROPY SOLUTION IN REGION 5

The entropy solution follows from the differential form of the

combined First and Second Laws of Thermodynamics,

TdS = de - (p/pe)dp. (G-1)
Substituting for the internal-energy term,

de = [R/(y-1)]laT,
one can rewrite Eq. (G-1) as

ds = [R/(y-1)1aT/T - (p/pT)de/p.-

In dimensionless form, and for small perturbations, this last result

becomes

S'/R = T'/(y-1)T - p'/p. (6-2)

Substituting the known solutions for temperature and density, Eqs. (12)
and (13) in the text, one can write finally

s'/R = -[yZ/(y-1) 1(x/£)Lt, (6-3)

or, equivalently,
S'"/R = —[WIL/(W—l)V}]X, (G-4)

which is Eq. (14) in the text.
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APPENDIX H

ENERGY RATE-OF-CHANGE RELATION

The variation of the temperature perturbation with distance behind

the incident shock wave is given by (see Eq. (A-7) in Appendix A)

Th/T, = - [{oyy - 2)/(eyy - 1)1Bs. (H-1)

FPor an ideal gas this quantity is also equal to eé/e2 where e, is the

specific internal energy. The rate of change of internal energy following

a fluid particle is therefore

2 = - oy - 2)/(pyy - 1)Ieg Bo s (8-2)

T = U = Vg/Ppy -

In order to write this lagt result in terms of L, one can multiply and

divide by (vs + Vf)’ i.e.,

De!
== = - [(py - 2)/(pyy - DIleL/(X + V/V Je,, 1. (H-3)

However, one can readily show that

V., = (ey - l)/(p51 - Ppy)

so that Eq. (H-S) can be rewritten simply as
De!
2 - - -

which is Eq. (16) in the text.
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Figure 1. Space~time diagram for shock-wave reflection
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Figure 2. Dimensionless Coefficients I, J, and K
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Temperature distribution
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Figure 4. Internal energy gain-to-loss rate
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